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Theor’j ~ic ’ Applicdtio:1

A. V. Balakrishnan~

Abstract We prosent a theory of estim~tioi of par 1~-~L’~r~ in lii’~ -~r
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We use a white noise imodel to represent observation eriors (in coiitra’3t to

a Wiener process nKx~el) . The application is to the problem of identifying

aircraft as well as turt ulence (wind-gust) pardb~ ters from flighL Lest

data. Results obtained on actual data (not sinu.~I! ~ted d~ita) are presented.
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1. Introduction

‘flie estimation problem in essence is the follo.-:ing. We have an

observed process y (t )  (ri x 1 matrix function ) which has the Ions

y(t )  S( O , t) + N (t )  0 < t < T (1.1)

where ‘O~ denotes a vector of un) <~.ci~-in par amater’s Which we wont to estin :~L ,

S(0 , t) being a stochastic process (“ sigrici.”) which :1:; completcJ.y spocified

once 0 is specifte.d (by macos of a stochastic differential sys Len , for

example) and N ( t) is a stochastic process which irodels the e1~ rr’~-; (that

rez~ in even after all ‘systc~Lnj tic ’ errors , such as hi os and calll)rot ion

errors , have been accounted for). There is much cvj (~-~i~ce to u~ ; ,~st that

the noise process may be well m o d elled as Coussian , and :Ln c~~u.-~ndcnL’ 01

the signal process. This is a basic assu:.pt ion ti iruout in thJ~ p~i’ er.

Under the title of “System IdentLfication tt there is a

engineering literature dealing with such problema . rfhj s is well documsntccl

in the proceedings of t1u~~:’ symposia [1] devoted e~ciusively tl~::r’~to.

In the bulk of this literature, the process S(0 , t) i_s taken to be

detenninistic , in which case the estimation is lar~~iy treated as a

‘Least Squares ’ problem of minirni sing

f  ~Iy(t) - S(0 , t )H  dt
0

over a prudcte-nrdned athmissibJ .e set of paramei er’s 0. ~d iere the stc~ ’i ic : t .i :

signal ease is considered , it is reduced to the time-discrete version

of (1.1):

y S (0) + N ( 1.2)
n n n

2
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for the reason that the continuous tima is mathematically too difficult

to handle , and anyhow , in digital computer processing (as is the rule) ,

it is so c1~ r r i .~ zer 1 in the A—D conversion process anyway. This is

indeed tr ’u ’; but t h e  authors invariably proceed to nuke the ass Lion

that the noise samples {N~ ) are mutually independent . But this rv~ju ires

that the sampling rv~to (in the periodic sampling of the data) be not more

than twice the postulated ‘bandwidth ’ of the noise , i~ scif actually ur tkrra~.s

Indeed in nost practical cases the sampling rate is far higher than twice

the bandwidth. To meet this oiriection , one nuy then allow the to be

correlated. But then the correlation function must be known , arid anyone

with experience in handling real data cart easily appreciate that it is

unrealistic to requi re that much knowledge of the noise process , ev~e ±1

the compl ication in the theory can be borne.

We ;;~~r ;tsin . in any ovant ., that it is r.n:h better to w:r~: with the

time—cont inuous rrcdei. (1.1) , allowing as high a sampling rate in the

processing as the A--D converter is designed for . But in the ti.r~. • - -

continuous madel we are faced with another problem. The basic tool in

estiitation i_ s the likelihood functional ( for fi xed poramsters ) ~~ ich is

based on the Radon—Nikodym derivative of the probability measure induced

by the process by y ( )  to that induced by the noise process N ( t ) .  But

this derivative is too difficult to calculat e even when the precise

spectrum of N ( s )  is known , which it is not. What we can s i’t I~ r

sure is that the bandwidth of noise N ( t )  is much larger than t l ist

of the process 5(0; t ) , which is esscntial• in order that the i~r~ tau siJig

instrur m~ nt dc~en not ‘distort ’ the si gnal . At this point it was cust~ iciry

in the earlier eng i neci ’Lng literature to introduce “white noise” i i a

foniu l way as a st~d icurr y stochastic piv~’c.;s with co: tr: t a~tt spect ~~i 1

3
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density to represent the ‘lax -ge bandwidth’ nat ure of N (t )  . With  1h~

advances in the theory of diffus ion processes using the Ito m t  ~r a] ,

it becan fashionable to use a Wiener process rredei as being “u t  r~:

rigorous” [2]. Thus we replace (1.1) by

Y(t )  S(0 ,o)do + W (t)  ( 1.3)

where W( t)  is a Wiener process . L.’e Cdi then ex~
] oi.t the we l l— d•: ’~’~ ] ehed

machinery of martin~;ales and Ito intenjr~’ls . In fact the ljkc~:L ih ( - a~

function can then be expressed as: (see [2 ] ) :

Ex~ - l/2 { j

T 
u~co ,t~i l 2at 2 

f

T
[~ (0~~) dY(t)]J (1.4)

where S(0,t) is the best m.win square estimat e of S(0 ,t) given the sigi~o—

algebra ~pncruteci by Y(s) , s < t. This fou rnula can be ~u ;t] y ceasidei~~c1

as one of the tx~ uisphs of the Ito theory, the key to the success i)cirlg

the appearance of the Ito—integral in the second foiin üi (i. ’~) .  Ti is

integral is defined on the basis that Y(t )  is of unbounded varic~ ~en

with prchab~ lity one . Of course no physlca lrstruln?nt can pi~x~ue~:. such

a waveform. To calculate it , given the actual observation (1.1) , we c i i

“retrace” our steps bach from (1.3) and use

y(t)dt

in place of dY(t ) .  But this is totally h cwirec L , u’ii . ss S(0 , t )  i s

deterministic , and any minimisation proc~ dure 1~~ ;~ d On it leads to

erroneous results. This point is not or-piec U:rtcd by authors u ;i np  ( 1.3)

as “n~ore rigorous” , perhaps because they 1~~ivc ru : ) t  h~ c~ccasiu:u to act ually

calculate anything 1~ r ;cd on red data. Li arty data ~‘, ‘nr.rated by

II
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digital computer simulation , which must pcrioree employ the discrete

version ( 1.2) , this point can he completely in. ~shed and hence never

appreciated.

Faced with this difficulty we have to e>:~etLrie nore precisely th~

nodel again , to see a physically nore meai iiiigful way of exploiting the

fact that the noise b~u ud ~ii dth s large compared to the si gnal h~t~;P : i dL l, .
What is needed is the ‘asymptotic fonru ’ of the likelihood funct ieii ] as

the bandwidth expands to infinity in an ad itrary mariner.

Such a theory h a s  been developed by the author using a preciee r haa i

of white noise. This is explained in Section 2. Based on this theory

we derive a likelihood functional in Section 3. It turns out that

formula (1. L~) is replaced by

T A 2Exp - 1/2 {J j S( C ,t ) J  dt - 2 f  S(0,t) y(t )d t

~~~~~~~~~~~~~~~ A 2
+ f (

~ IS (0,t)I - S(0 ,t ) J  I )dt
} 

(1.5)

where A denotes conditional expectation giveli the data upto time t .

Note that a third term appears which can also be expressed as:

1

T 
IIS (0 ,t)  - S(0,t)H

2dt

and in the case where S(O ,t)  is C,art~sian , this reduces to

T A 2f  E[~~S(0,t)  — S(0,t) II

being thus the integorl of the mean square error in estimation of the

signal S(0 ,t)  from the observat ion upto tim: 1.. When the signal pfl)COSs

can he described In terms of stochastic differential equations , wh ir -Pier

5 -
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finite or inlin i te  dimensional advantage can be taken of the fact that

the mean square error can be evaluated by solving a 1~3ccat i equation .

Section ~4 is devoted to this specialisation . Sect ion 5 deals with the

application to t h e  problem of stability a~ d control d:rrivativ~e; fran

flight test d ita taking tw hulence into account . The a1~ urithins used

and r inu ] Ls oI) t aaJ ied on actual fli ght data ore 

included.£
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2. W~h fi:~ Oi~3!2 : BA~3iC tPfll~~~

Lcit H denot a real - ~:~rab1c I i i  h; z rs Space di ~~ let

W L
2 
[0, T H] , U < T .~ c-

denot e the reel filbert Spsx el h i — \ u l u ’~ ucuki ,’ - a . u ~ ._h ]e I u : : t i u i s ;

u(.) ~udi that

j
T 

[u(t) , u(t)~~~

with ~:ai --p~~~~ o I~ fie• :~ J y

T
[u , ~1 = f  [u Ct )

Let b~ ~~~‘fl2f 2 (tn ’ ~ ~~asnrn en W (na ihe cylinder sets with finite d:Lw:n dccii

Borel basis) with cI~ar~ictei Jat le  function

CG(h) 1:xp - l/2 [h , h] , h W .

Elei:t~ it  a of W Ufl~~: 1’ this (finitely a’:~ Ltivc ) me~c.u~ c will h !  ‘white n

sample fl !rtCt iC’~ I ; ’ , denoted ~. This t :n:iinolofy n’p;e :e ’r to have the a - _ :~

of usage ; see Sf d J u c x)  [ 3] fe: ’ ex~wu;d . It is  essential i or u ;  thn~ f is

an L 2 —s pace ov r t ’  fuute .i r ib~- rval.

Any functi o;i f(  ) d iti  nod on W into eiunLh ’ J’ lfi lbert Space hI
~ 

sue i

the iruv roe ine~ e:; of &ai cl r~2to in II are cy J ii f a sets wi ll he call ‘J a

- ‘ function. Sec (~~~J5:~ I 4 ]. Au is readi.] y s - n , the class of t n ~ -

functions is a linear class . Since t h e  inverse i i w ~~ of the whole sp a- ’’ II

7
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mus t ~~ cy) J. r i  cnl , it is clear’ tha t di:y ta~ ; functi on has the fori~ f( l ’u)

~~~-ce P is a f in i te di ir -:c:Lcnra pYo~( (  LLon .

To mtn:~j ’.w’? Pie r e - t i c~ of a ~~~~~~~~~~~ ~~~~~~~~~ let us I irct ccii

~u 1o*d’.’~~ to ih-~’ case ~ li’ i~ 11 iS I HI dh ~ ‘ c i  On d 11r i~~ say . P. ’

ifl~ L0(i.~e’ a n a b  5c; into U :; I iii ‘or s; aco of t e .  f uncti ons by:

II - t .  I 
~~~~~~ 

~JH~ ft_ ~~

ail tl,c~ cc: ’ tetc. the space , the ce: ;-l c:t on :iicd d b~~ a }~~ ct S o ’ .

cia --nt  of ti c- e :  :rltcL c d space is ca l l  Ccl  a ‘rundsa variable ’ 5! ci if ~ cf e’te-~

scab in c:icarsU and ± (w) a c!or;~~ci T e l laf C5’Jd~1 s’-c uCnce iii i )irbe .d ’l .J i tu ,

then u~’ ~ -S in!  ~ c-i c c~n;~~n~ ‘d; u~ ~ ‘it u tion function ’ a; pia~Lsb~ 1 ~

co be that ind eed by the choracter istic fu;~c’Iion

‘ ‘  - ~~~~~ 
., , i I L ,(a ) . hi~ f ’  ~~\

- . -

3 1

Tr .~ latter 1;:::~ i x  sis (tuaio~~aTy on bounded seta of

In the (~~~~~ i~henr’ II ~ n~ longer finite (1r.cnsionai , icc shall sti:I ]

id ‘nt. i fy Caucc iy sequences in p ebabil i Ly of t~c’c : a ictic’n rt c s  “ecJ: ro:~i a;

vu; ‘I, t i  Cs” . ~i c~ li~~ t in (2 .0 )  still holds, ~~i fonaly on beJri:led acts a

Jl r~ 
I-nt the 3 ia Lct m~iy in fYI icns:il oaly da fine a “.:!,:if . dLstaibrtti:’n ” Pr, ~

‘C

recall in this oonne~~~ioa L i i !  S .iaonc v theorem [ 5) that tho limi t is U

characteristic I ucist con oS a p ; oi ’~~’i i it nauaurc ’ if and only it i t  is

Cortti0000S i ii  ti k r  trace—: ~otm topolo~’~-.’ ( ‘S—topo l o~y ’ see i . t  -n,’). ThIS s a

0 ~t a:v ttieal Ly ti ci case if the acque: ;r’i is Caudty in the n ’  ~n a:~u ire ac: iac;

and we shall di :n drop the c1uali ficatioii “wa f” .

8
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I .‘t f (w) Lx~ any Borel ntiasuralde luno tion  supp ing W into Then

f(Pw) is tame fec’ c~~ry fin i te—dimensional project ion operrit or’ I’. Li~it ii’ )

& ‘ r icLu a sequence of fini-t :’ cb~ i~r~~ional proj ect]ona converç’,ir;~’, strongly to

the Jd,’nt ~ty ; thi’:’ ~~~1ua: LOL! I -y b-a a~sui:od -to be no i c t  c-ne if Pie soqu

f(P ) is cnuc~iy in probJdIity , tb- c we rr~y c- c -~sceiate a (w~’J:, in~-,~’n~ i .1)

randa’;: ‘ ‘c;r ’ic~~1o i: i th f ( . ) .  1;i~~ us denote it by I (a notation cc-cd by (~e : ,;).

This i5;a t of ac-are:- eciri dcp:s ~l on Ii ic p~rt icu.l~n ‘ prom-c-c; ~iun ae’pienC~c a;

Of psi:: a y : in te ;u ;t  to us aa’ tf )c ; fcc icc- ions f ( S )  lot’ which ~~ ~

~~ uchy in pretabe] Sty lOT’ ~ V : H,’ such s-c -eu- ace of f ini te  cLrd i : ronai p: ‘e3 -~~t i -sac

and 1 ) :  aver suoJ i that all such Caucrh y c :-OT-ucne c s are c’qui v: i~~ t so that: the

~~~~ rendom V , , L j d - I C  f J ! !  l a ique . in that  cas ~‘e say tha t 1(w) is a

ran-f-a var-labS -c . We slia.3l. cee tb-c torn “rcc~dac ; cccc -~-d Sc ” SI the c-a; i ’- 
~~ 

- - 
~

c is count ably ad-ilt c-c ; we shill ] be dealing in tiie a-c - eu ; only 01 P -

mcc ’ “-: ~~~-‘ (‘( V \ ’  ~~~~~~~~ ~- i ,  thiS will bc c;utrr cd a_ .

The siiip]’c:- t function one can co’ioidcr is a :cs~o the I h ; c-ec ’ f a ’L~

f( c~i)

when? L is a ill :c’cn bothnck~c1 tre;n;fc cation n~ippin g W into - , e~ lYre i - ’ i in :

allc~.i 11 to be infinite t h n ’ ’j s~ onal . Then it is easy to soc that if L is
r -

HiUx’-rt—Scl urnidt , then {L.P1 o) is Cauchy in the ms - square ion a ’ , and luji

is a i’nnj c~i variable. Cva~-sci’se~ y L ccc ! t: be ILS. if  Ui is to l~ a re-i ~l

vari ible.

I
9
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- I
What is the class of l unctiona which are rendorn variables? To anawe;-

thi s question , at 1 ~st in part , let us introduce the S-topology on W: this

is the (local]y ccnvc:x) tc ’ clcx~,’ irci :-c-ed by Se;ccn~~ea of the form :

p (w) J~~w] (2 .1 )

wb’cr .~ hcre (aid h-creinaftcs’) S will Ci~~itOtC a seif—adj oint , non--negative

definite treca- eisa; of~’! :t ai ’ on W inLO W . For the ease wI~crc-; H
r

os.; IT 3 ira given a sufficient condition : f ( • )  is a i’a d~c,n variable if

it is un i fI -a Iv  continuous in the S—topology . Uniform continui ty r nc - c -aic that

given c > 0 , icr Con fin i p ( . )  such that

IIf (x ) — f(y )~~ < c for all >;, y such that p(x-.y) < :t.

Unfor unateiy (~cus~ does neic - sc-nc to diccuos non - - t:’Jvicil e:-a:-~cb~c-~ of functions

satisfying this condition. Hcn-u we shall give a sufficient condit i on for a

class of rando’i variables with finite second nnrnant.

Theorem 2.1

Lot p (w) denote a homogeneous polynanial of degree n mapping Ii~ into

Suppose it is continuous at the origin in the S-topology. Let P denote any

finite dimensional projection .

Sup E ( I I P ~ ( P w ) J I 2 ) < (2 .2 )

where the suprern urn is taken over the class of all finite dimensional projecti ons .

Conversely , if (2 . 2 )  holds , then ç~~•) is continuous at the origin in the

S-topo1o~,’.

Proof We begin with a simple but useful Loiuaa.

10
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Lerwaa 2 .1

Suppose p~( ° )  is cont inuous in the S-topology at the origin . Then there

exists a seminoritt in the S-topology :

p(~ ) ~~~~~~~ 
( 2 . 3 )

such that

~lp~(~3) I l  < N  ç (w) ’~ 
(2 . ’~)

where N is a constant . Conversely if (2. Ii) holds, then p~ (w) is continuous in

the S-topology at the origin .

Cont inuLLy in the S tapalegy aL zero 3 r ~~~ r s  this : gIven F . 0 we can find a

s~~dsiorm of 
the fon~ (2. 

3) such that

~p~ (w) < c for afl w such that p(w) < 6 (2.5)

Hence for any w for ~Thid~

p( w) 4 0 , 

-

we have that

6w
< ~

or by the h~~~ geneity of p~( ) ~ 
-

< (--s-) p (w) ”~, p(w) 4
‘5n

11 - 
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r

If p ( w)  0 , then for any positive number k ,

p(kw ) 0

and hence fruii (2.5)

~p1~
(n) ~< c~k~

for all )c > 0 and hence

p (w) 0n
Hence 2. ~4 holds . The coSVCr ;e is obviouS.

Proof of T~~c- ’:o

cor ,nthng to a finite diiransiOflal project iOnS P, we can find an

r-~~i3nnr.~~l ba: ~~ ‘ .) a’~ ]
~ that 1’ is the proj ection o i ~~~ r rrcsp5n C~~~~g to

the space sparc -e d by 
~~~~~~ 

1 1,2 ,. . .m. Let

p~w )~ k~ (w~ . . .W )

• .)  being the s~rn;~~tri C n-]Jnear fo~ n coi~~~spond~~g to p~ ( .) .

.

in m
p (Pta) E ... ~~ a1 ,. . .

~~~ ~~~~ 
....~~~ . 

(2.6)

l~~1 1 n 1 
in

fl

where

a 1 , .  . . k ( ~~1 , .

[~~.,w) .

12
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The is a sequence of independent zero—n~an unit variance Gaussians and

(2.6)  defines a t~~~ function . Moreover we can readi ly calcul ate (by expressing

( 2 . 6 )  in ter~~; of Hermite po]ynanial for instance) that

Ed Jp ~
(Pw) I J

2
)

{n/2] m m m m
> ( li. )2 

~ E ... E
v~ 0 (n—2v) !2 v! I

2V4l~
1 i~~zl 

~~~~~ 1~ ::1

( 2 . 7 )  
.

‘

Bu~ fi-~~n Ji :-nir 2.1 , we have that

I~
(
~~) l 1

2 [Srnw,wTJ~ (2 .8 )

~here

S ~~P S PIn

and is of course trnce--class and finite dinensional.

Hence -

: E [H p 1.~( P w ) [ I 2 ] < E S mw ,w]’
~
) (2 .9 )

Let ~~~~, k 1,.. . v , be the orthononnalized elgen-vectors of Sm with correspondin~;

non-zero e.ig~n-va1ues Ak~

Then

[S~~~~w, w] E A1
[~b1,w] 2 

-

and we h ave

~~~~
‘5 r~’ 

Tr.S~ ,..Tr.S~ )

13 
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where f ( • •)  is a fixed continuous function . Of course

Tr. S~

4 is ~~~otone ~~ m for each j  and oonve~~e to

Tr. S1

Hence it folic~ s that

E { I I p ( P w ) 1 1
2] < °~

for all finite dimensional projections.

To prove the converse , suppose (2 .2 )  holds . The (2 .  7) holds for every ru , and

taking vz 0 therein , icc- obtain that

H ... 1 k  <~~~~~ ..
~~~

• - <~~~~ (2.10 )
~ 

- n t , ~~r
fo~ every ortliononmal sequence {4’1}. Hence ~~~~ is Hu bert—Schmidt . Of

course

~~M tI ~ 1 t 2n 
- 

( 2 J )

J~~fine nc~ S by:

[Sw ,wJ (11 ( ) 11
2)l/n

Then S is Hu bert—Schmidt by (2 .10 ) .

For any finite dirrensional proj ection P ,

Ecspw ,Pw) EIPS Pw ,w]

11~
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and hence

sup E [PSPw ,w) <

P

But taking the orthononia1~ basis of elgen—vectors of 5, it Io11c~ s th-:it S

is tr~ce—c1ass.

It follo-s from Theorem 2.1 that if a homogeneous po1ync~~ia1 is

unifonnly contin~~us in the S-topology , the corresponding i uncJcrn variJd-.

has finite second nonent .

For a homogeneous polyncinial of degree 2 with range in R
~
(H
r 

R’ v~ 
-

more generelly) we can prove that continuity at the ori gin in the S—I a~-~~

is sufficient to make it a randcin variab le . For from (2 .7 )  ~ac

E [ H p 2 ( P w ) 1 1 2 ] 
~ ~ Ik~~~~1~~~~) I  

2 
+ ~~ k 2

(
~~1,~~1) I 2 < ° ~

and hence

for any orthox LoflT~Jl system. Hence it fo1l~~s that

E [ ( I P 2 (P r
(
~

) P2 m ~~ l I 2 ]

is Cauchy . This suffices for our purçx ses here . See [6] I c u -  more , and in

particular the relation to multiple Ito integraJs.

15
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3. RAtxJN-NIKODY~-1 DERIVATIVES OF WEAK DISTRLBIJrIONS.

Let w denote white noise samp les as in Section 2 and let

y (w) f(w) + w (3.1)

where f ( s )  is a random variable nupping into W ; then {y(P ~w ) )  is a

Cauchy sequence in probability (being the sum of two such sequences) and

the limit is independent of the particuJ ar sequence 
~~~~ 

chosen. Hence y (w)

induces a weak distribution on W . Call it p .  As finitely additive

neasures , is said to be absolutc]y continuous with respect to if

given any c > 0 , we can find 6 > 0 such that for any cylinder ~ct C ,

p~,,(C) < C

as soon as

1IG \
~~

) < S

The definition of the derivative however is more involved. For our purj ~a-~c:; ,

we shall be concerned with the ease wb~-r-c the deri vative is a raridorn-veL~~ e.

Tha:t is to say, there exists a function f(w)  rrklpping W into R 1- such that

f( w) is a random variable and for any cylinder set C:

= u r n  J f(P w ) d l t ~

where 
~~~~ 

i~ any monotone se-iuenc e of finite cl.Lr ~sisiona1 projection s

convm~~ing strongly to the identity.

Let

W
~ 

L
2 

[(0 ,T); H

36
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where H5 is a separable Hilbert space . Let denote Gauss measure thereon ,

and let denote points in W~. (The subscript s stands for ‘signal’) . Let

W~~~~W ® W
2 s

the Cartesian product and induce the product Gauss measure p 2 on W 2 :

ii2 (C5 ® C )  P~ (C~) p0(C )

where C~ is a cylinde r set in W~ and C a cylinder set in W. D2fine

L~note points in W2 by w2 :

CL)

= 
~ 

S

Let

y(~ 2 ) = f(w 5
) + w ( 3 . 2 )

where f ( s )  is a random variable riupping W5 into W. Let denote again the

(f initely additive) measure induced by y ( - ) .  We wish to prove the

absolute continuity of the measure ii~~
( • )  with respect to the

measure 
~~~ ~ and to find the corresponding derivative.

For the Wiener process version of ( 1 .2) , such a result appears to have

been first developed by Duncan [7] for the case where f(~~~) is a diffu sion

process. See also [8] as rruy be expected , our result has a superficial similari ty to

Stratcinovi.ch version [9 , eq. 12].

Let H be finite dimensional: H F~~.

17 
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Theorem 2.1 Let f(w0) dc-note a randcin variable mapping W~ into W such that

E(l lf(~i5)I 1
2 

<
~~~ (3 .3)

Let y(w 2 ) be dom ed by (3.2).

Then is absolutely continuous with respect to and the derivative

is a random vari able (white noise integral ) , corresponding to the function

g(w) defined by:

g(~~) (Lxp - 1 / 2 {1 1 x 1 1
2 

- 2 {x ,w]1) dp3 (3 .~~)

where x is a duriiny variable denoting points in W , and p~ ( .)  is the countably

additive measure induced by f ( .)  on the Borel sets of W. I’bre precisely :

lim E(Exp i 
~~m ~~~ 

,h])

= C(h)

= I e
1

~~~~
tU]

dp -

S

where 
~m 

is any nunotone sequence of finite dimensional projections converging

strongly to the identity .

Proof

With p5 denot ing the ( countebly additive) measure induced by f (w 5
) on W ,

define for each ~ :

g(w) =f ~ Exp 1/ 2f ltx 1 1

2 
- 2 [x ,w]} dils 

-

18
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This is well defined since the integran d is continuous in x , non-negative ,

and bounded by

Exp 1/2 f t 1 1 2 .

Moreover g(w) is actually a continuous functional on W. For , given c > 0,

we can find a closed bounded K such that
C

> 1 — c.

Then

Exp - 1/2 { 11 5 11 2 - 2  [s ,w]} dp

is continuous in w and on the complement K , the integral is

< (exp f L L2 
) ~

Now let us show that g(w) is a random variable . Let {P~ } denote a monotone

sequence of finite dirr~nsiona1 projections on W strongly convergent to the

identity. Let {4~~) denote a corresponc rig orthonoreal basis, with the

range of 
~m being the span of the first m methers of the sequence . Let us

note that we can write

g(Prnw) f (Exp. — 1/2 I lx  - PmX I 1
2 

- 1/2( 1 
~~~~ 

~2 
- 2 [PrnX ,w]})

~~ 
dPs

and hence is

~~f E ~~ - 1/2(I I~ x l - 2  [PmX~w]} dp5. 
-

19
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Let

g~(w) zJ Exp — 1/2 {ll P x II
2 

— 2 [P x ,w]} dp

~~~~~

Then

= — 1/2 (1 l~~xI 1

2 
- 2 [P1~x ,w]} d~) 

dPs

= 1

Next

-

~ff(i - - l/211x_ Pmx l J
2) Exp - 1/2( 1 I P mX J j 2 

- 2 [P
~x ,w]} dp

~ .dP G

(1 - Exp - l/2 1 1x  - PmXI l 2 )
~~

< C  for allm>m (C ).

Hence the convergence properties of {g(Frnw) } are the sane as that of 
~~~~~ 

~~•

The latter sequence is a mar’t ingale . At this point rather than rel -~ 
-
~

t r - tdi.t ional arguments , we shall exploit them and thereby also show the

conn~ction to the Wiener process version . Thus let

(y (CL)) , 4~~~] = y~~ x j +

20
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where

x1 = Ix, •~]; 
~~ 

[~~, 4)~]

Here the 
~~~~

, i 1,. . n , for any finite n arc independent zero mean, unit

variance Gaussians. W-: can create a “probability space” with a countably

additive r:casure on it such that for any finite number of co—ordinates we

have the sane distributions: namely R
C
~ for the space , and the ~J ~ rsi-aJ geL e

~ generated by cylinder- sets, for the Borel sets. Equivalently,  we could

use CEO ,T] the Banach space of continuous functions with range in R~, (with

the usual sup nonn) as the space by defining the nupping W into C[o ,T] by:

t
S( t)  x(a)do 0 < t < T

0

and W(t) to be standard Wiener nrocess en CI D ,TJ and defining

Y(t) = I x(o)da + W(t) (3 .~~~)J O

with the Wiener measure and the measure induced by S ( - )  independent . L~-i this

way we get a “co—ordinate free” representation, and we note that the Vc1~~ J O h ) E 5

fT
Jo [4)

1
(t) , dY(t)] = y

~~

have the sane finite dim~nsional distributions as before . Moreover the

variables g~(~) have a conesponding interpretation and have the sane

distribution for any finite m, and under the condition (3. 3), we know th~ t

the measure induced h:,’ Y(.) is absolutely wntinuous with respect to Wien-:--

measure, the martingale sequence converging to it in- the mean of n~~Iei one.

The derivat iw itself is given by (see Duncan [7]) by:

21
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- 1/2 [fT x(t ) 2dt - 1
T J  (3.7)

where E [  J denotes expectation with respect to the measure induced by the

process S ( )  on C[O ,TJ; the (Ito) integral (the processes being independent).

T

f
being the sane as:

T
0~ c _
~ x1 C~ where x~ z J0 [~~ (t)~ dS(t)]

f [q 1
(t) ,d~.-~(t)] .

We have thus proved that g(P~~) is Cauchy in the mean of order one ;

and such sequences axe equivalent as we change basis . Moreover , it readily

follows that for cylinder sets C:

p (C) 1~~it f ~~ (w) dpG

~~~it f g(P
~~

)d pG

This concludes the proof of the Theorem.

_ _ _  

22 
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Corollary

For any t, 0 < t < T , let

W(t ) L~ [[O ,t]; F~ ]

W (t )  = L2 [iO ,t]; ~~

Let p
~ denote the Gauss measure on W(t ) and sinu .Iarly the projection of

on the sub—sig~~e algebra of &orel sets in W(t). Then the statement of

the theorem applied to neasurus on W(t ) reads :

g(t; P(t )w) 
4

ExP - 1/2 ( f  IP ( t )x 1 1
2 

- 2 [P(t )x ,w] } d~i s

where P(t)  denotes the projection of W o n  W( t ) .

Proof The proof is inuediate . We state it rather to note that we cannot take

derivatives (with respect to t) in this formula a-s we can in the Wiener

process ve~i~ion .

Remark The Theorem holds for any countably additive measure p 3 on the Bore 1

sets of W , not necessarily generated by a random variable f(w 5) .

Let us note that the main virtue of the theorem is not so much the

formula (3. ~) but rather that the derivative is a random variable . The latter

has been proved for a related but more general problem in [10 ] under

additional ~e,sunrsti,( r ie . We expiure this in the next section .

The ‘Linear’ Case.

Mostly to illustrate the idees involved , let- us consider the special

case where f(w ) is linear . Thus let

L + W (3 .8)

where n~ - ’ w-.~ allow JI in the def n i  t. ion of W t o  he inf inite dimensional , arid

23
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where L is a linear bounded tiunsfonmation on W into W. Then we note that

in orde r for L~i to be a rand or:~ variable it is necessary and suf ficient that

L be Hhlber’L—Stha~dt . Hence let L be Hi1bert—Sc~unidt . Then y (w 2
) being

Gaussian , it is cui :nJ rtely characterized by the corresponding covari ance

operator:

I + L L

Since Lb is certainly Hu bert—Schmidt (actually of couree traea-class) , we

can apply the Krein factorization theorem to obtain the representation

(I + (I - ~~
‘)  ( I _ 9~

where ~i is a Hu bert-Schmidt Volterra operator :

P t
f = c!~ cr (t )  = I k(t~s) f(s)ds  a.e. 0 <  t < T

J o 
V

mapping r
~.! into itself. In particular we note that

z(u~2
) = y(w

2
) —s~

?’y(~~~) -

also def ines white noise ; and ef~~~ng

(I + M)  = (I

where M must then be also Hilbert—Schirndt and Volterra , we note that we can

represent y(~~~
2
) also as:

y (w
2
) Mz(~ 2

) + z(w 2
) (3 .9)

2l~ -
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In this form we can seek the derivative of the weak distr ibut ions induced

by y ( . )  to Gauss measure (induced by z(o 2
) but the processes are no longer

independent. However it is shown in [10] that th e  derivative is a random-

variable if and only if

*M + M

is trace-class . But , in the present instance this readily follows from the

fact that LL is trace-class , since

*LL MM + (M + M )

In other words in the model (3.9), the conditions that M be trace-class is

always satisfied if it is deduced from the model [3. 1]. Incidentally ,  it is

of interest to note that the derivative is given by:

g(w) - 1/2 [I IMw l 1
2 

- 2 [~~,w] + ~~ (M + M ) ]  (3.10 )

and can he deduced from (3.4) . Also it should be noted that

*Tr(M + M ) = Ti’ (f/)÷ £‘~)

and also

= E [ I L x  -~~y 1 1
2 ]; x (3.11)

The last formula is particularly interesting since it has a variat i onal

interpretation . Since is such that the covariance Lb is trace-class

we can formulat e the problem of minimizing

EE l I~~ 
- Ky (w 2 ) l  1

2
] (3.1:— )

25
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over the class of all Hilhert-.Schnticlt Volterra operators K. But to

show that a minimum exists and is given by the H. S. Volterra operator K0 ,
it is enough to show that

~~~~~
. E ( l ~ Lw5 — (K

0 +XX )y (~~~
2
)~~~~

2
] = 0

x = 0

E E [L~ 5 
- (K + XK )y(w 2

) , ~~~~
]
2 

= 0

or ,

- Ti’. (K + 1K ) ( I + L L *) ( K
0 + AK) * _ 2 L L*( K + X K ) ~~} = 0

en yields

~~~~ . (K (I + I )  — = U

for which it is necessary arid sufficient that

K0
(I + — LL~

be the ajoint of a H.S.  Volter ra operator. But substituting 9’ for K0 , ~~~~-‘

see that

y(I  + LL’ ) — LL ’

(‘I — I) (I -+ L I )  + I

— (I — ~~~
‘

)

_l 
+ ~

= — (I + M’S ) + I

= M

76
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Hence Si? yields the optimal minimising H. S. Volterra operator . The main

point to be noted here is that existing of an optimal solution to the

miniinisng problem (3.12) is equivalent to that of the Krein factorization .

Whether L is Volterra or not plays no role .

Conditional Expectation: Bayes Formula

Let us note new one important by-product of Theorem 2.1. Let q~(~)

be any element of W. Then by

E [[f(w
~

) , 4)] I y(w
2
)] (3.13)

we shall mean the limit of the Cauchy sequence (in the mean of order two) :

E [[F(w8
) , 4)] J F y ( ~ 2 )] (3. 14)

v 1or~ F k —‘ seaaencc of monotone C2 V5 V~~~~ 2 ! 1 V f l  f T i i t ’~ J i n ~ n Tfl 11
Ti — -~~ ‘--

projections converging strongly to the Identity.  It is implicit th it

this limit is independent of the particular sequence 
~n C ( ~~Cfl .  ~~ CdT)

then state : (Baye ’s Formula)

77 -
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Theorem 4.1

E[[i(~5
), 4)3 I y(~~.~~))

4 i~~~- J E~~ - 1/2 {H S ( 1 2 - 
2 ES, y (w

2
) ] }  d

~s
- (3.l~)- 

£ Fxp - 1/2 { Hs 11 2 
- 2 Es , y(w

2
)J} d~~~

& mark Note that (3 . l~ ) i~ de fis d f a -  uv~-:y y is ~V : .

Proof

GaVen th T  IIiJ5~~~ or~ ’ ~- -~~u- :tce of i j~ ~~ dii :uneic-n d pi u~ c t  ioss { 1 )

we may consid~ r an erL1L : Jn V ~e] La i~ (~~ } f e :  l- such that 1
~ 

c ’c sia

to the space spanned by th~- firs t n. Then we can calculate

E [[f(w ) , 4)~] I P y (w 2
)]

by the ( finite-dimensional) Bayes rule :

= 
LEs, 

~~ 
- 1/2 { i I ~ s I l 2 

- 2 [Pus, y]}. dps

- 1/2 C J I PnS I J
2 

- 2 {PnS~ 
y)) d

~s

and obtain in the limit , the formula (3.15) with for 4) . The formula

for arbitrary 4) is then imiiediate therefrom.

Corollary

Let F(t) denote the Pn~jcctions W onto W(t). Then for’ any ~ in W ,

and 0 < t < 1’,

E [I’(’t ) f ( &~5) , P (t )4 ) )  I P(t)y(w2
)]

- 

[P(t ) S,  P ( t ) 4 ) ]  Exp 
- 

1/2 {j j 1 ’ ( t ) S l  1
2 - 

2 [P(t)S, P(t)y]}. d~~~ -

- 

f E~~~ - 1/2 (llP (t )tij(
2 - 2  E P ( t ) S , }‘(t)y] ). d

~s

(3. 1 - )
}‘r~~ - f Ilie proof is irnrrdiate

~~~
_ _ _ _   
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Likelihood Ratio: General Case

Let us now consider t h e  general case where the signal process is rio t
necessarily Gaussian . Let

y(t) = S(t) + N (t )  0 < t < T < c . >

where S( s )  and N ( )  are independent j -:ocesses. We shall ass~~~ that the signal
S( •)  has finite ener~~: (cor~-esponding to 3.3)

j

T 
E ( I I S ( t ) 1 1 2 )dt <~~‘

For each t, 0 < t < T, let

W(t ) L2 [R ; (0 ,t )]

We shall shorten W(T) to simply W. Under condition ( 3 . 3 ) , the proces s S ( • )  induces
a couritably additive measure on W (and hence on W(t )  for cccl : t) .  [The cylinder
rx~easure on 14 cai i be extended to be eountab ly additive , in other words ; this  is a
consequence of the Sazonov theorem]. Thus y ( . )  defines a weak distribution on
W define d by the characteristic function :

E[e~~~~’~~~] = c~~(h) Exp - 1/2 I I h H 2 
(3.17)

where

c5t h)  = E[e3V[ S ,h]]

where we have used the inner-product notation :

[S ,h] f [S(t) , h ( L ) d t , h c 14.

Then t h e  cylinder- nrasure p induce d by y(~ ) is absolutely c c - sf  inuous wi th - i

- .  to Gauss measure and the i~ ldo1 —N ~~~~V i jsI der ivu~ k’e is de f ined by the f unction :

____________ —~
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f(w) J E~~ - 1/2 { I  Is i j
2 

- 2 [S,w)} dp5 (3.18)

Thus for any cylinder set C,

u~(C) limit 
~~~~ 

1
~~n~~ 

dPGn + ~~

where P
7 is any sequence of finite dj c ~iscional projections strongly co:lvL-rgcst

to the identity .

Let ~4 ) }  be an orthononmil basis in 14 and let L denote the mapping of 14

into £

a; ~~ 
j

T 
[x(o) 4)(c)]do.

Let

L S = C

Let p~ denote the measure induced on £2 by this mapping. Then we can re~ V/1~~ite

(3. 1R) in the form

f(w) Exp - 1/2 {[~~~] - 2 [~ , L~ ]} dp~ (3.19 )

2

It must be emphasised that (2.6 )  is defined for every elernz~nt w in 14. Note also

that (3.19 ) can be defined with respect to any or’thornormaJ. system ~4 ) } .

let us next consider the likelihood functional f(y ) where y ( • )  is the

observation. For this purpose , let (3 .3S\ ) be defined with respect to the

orth or:i or mil system (4)~ }. For each t, 0 < t < T , define the -operator s A C t ) ,

mapping into £2 by:

= a; a = f [~~(~ ) x(o)]dn
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Let

R(t) A( t )  A( t )~~ .

Then the Radon-Nikodyin derivative of the measth. a induced by the process y(~~)

over [0 ,t] with respect to Gauss measure on W(t ) is given by:

- f(t,w) Exp — 1/2 {[R(t) ~~~ — 2 [~ , A (t ) u J )  dp~ (3.20 )

Note that A(T) = L. Let P~ denote the projection operator corresponding to t h e

first n basis functions { q .  }, i 1,.. . n. Then we define

~(t) lim E [t I A ( t )  P~~]

As we have seen , we have (Bayes Formula) that

A f~ ~~ Exp — 1/2 C [R(t )~~,t~] — 2 Ec, A (t )y ]}  dp~

c(t) 2 _ _ _ _

f Exp — 1/2 {[R(t)c,c] — 2 [~ , A( t )y ] }  ~~~
£2

V Note that , by Schwart z Inequality

I I c )  1

2 Exp - 1/2 t {R(t )c,c] - 2 E c ,  A (t )y ] }  dP (

I k(t) 112 2

f£2 
Exp - 1/2 { [R (t )c ,c]  - 2 E c ,  A (t ) y ] }  ~~~~

- 

‘2 

H C H 2 Exp — 1/2 ) ) R ( t ) c  — A ( t ) y ) )  dp
~~

£
2 

Exp - 1/2 I ) R ( t ) C  - A ( t ) y j  
2 

dP ç

< c  E [ ) ) c I  j
2
j }~xp + 1/2 ~~~ ) A ( t ) y f f  + ~~

)
2 

~ < C  < , 0 < k < (3.21)

31
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It should be noted that such an estimate is not available in the Wienc-r prt ccs s
version. Moreover we shall show that (3.20 ) is actually obsolutely continuous in
t with an L2—derivative. Let 4) ( t )  be infinitely differentiable w i t h  compact

support in (0 ,T) . Then
T

( If(t,w) 4) ’(t ) ]dt
Jo

= f I [E xp - 1/2 {{R (t ) c ,c ]  - 2 E c ,  A (t)w]} ~‘(t)dt]} d~c
2

£
2 

(f T 
- 1/2 ) 1 E 4 )~ (t ) 11 2 

+ [E4)
~

(t)  C1, w(t ) ] )  (Ex~ - 1/2 {[R (-L) c , i ]

- 2 [~ , A (t )w] } 4) (t )dt
) dP~

where we note that both

21I~4)4 (t)c 4 ) f  and [E 4 ) . ( t ) c . ,  w( t ) ]
:i~

-
~
- 

1~~ 
.L

are in L2 [O ,T] for each c in £2. Hence the derivative is (defined a.c, 0 < t < T) :

,
~ ~~

(- 1/2 II~4) .(t )c . IV + [E 4 ) . ( t ) c . ,  w(t ) ] )  Exp - 1/2 {[R (t) C ,C] - 2 [~ , A ( t )e]}  dp
£ 1

’ 1 1 1 1
2

we shall next prove that

~~(t )  = E 4)
1

(t )~~~~(t) 0 < t  < T

converges in the norm of 14. But this is irm~ediate from the fact thldt l n d o ~- L -a. ;

to (3.21) :

I )~ (t))I 2 < c  E[ ) I~4 ) . ( t ) c . ( I2 ] L’~~ + 1/2 I IA ( t ) ’ - , 11 2 a.e. 0 < t < T
1

Let

A A
S(t ) ~~4).(t),. (t)1
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arid J . I ) ~ 41(t )C 1l ) 2 Exp — 1/2 ( [R (t ) C ,C]  — 2 [c, A (t )y ] )  ~~~~

2

f Exp — 1/2 {[R (t)C,m. ] — 2 [C, A ( t )y] } dp

Then from (2.13) we can write :

~~~1og f(t , y) = - 1/2 {))~ (t))l
2 

- [S(t) , y(t)2 + (IS(t )11
2 

- II ~(t)I)
2}

and hence finally , for the log likelihood functional:

Log f(y )

V 

= - 1/2 
~ j

T 
)S( t ) )  I

2dt - 2 

~~~ 

T 

[S(t) , y(t)]dt

T .~~~~~~~~ A÷j [H S ( t ) I ) 2 
- ))s t)()2]dt} (3.22)

we note that the third term can also be expressed as

limit E [) ) S ( t )  - ~(t)I)
2 

~A( t )P y]
n _ ~~co

The formul a (3.22) differs from the Wiener proces ; vers hs; in s-

of the thir term ; in the case where S( t) is Gaussian , w -  kr ;e,: that t~~ ~~‘Ju- ~~:;

to
A

E [ 1) S(t )  — S ( t ) ) )  ]

which is then also independent of t h e  obsc~~ut ic-r ; y (~ ) as we l ; t v e  ~di~ H - ‘ .

33
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4. t~,rnamic Systems.

Finite Dimensional Case :

We wish now to specialise our results to the case where S(O ,t)  has

a stochastic differential system representation:

S(8 ,-t) = C(0) x (0 ,t)

C1X(O ,t) = A(0) x(0;t) + F (O) w (t ) ;  x(O ,0) = 0. (4.])

and the observation process has the form :

y(0,t) = S(0 ,t)  + G w(t )  (~4.2)

where we shall first consider the finite dimensional case so that CC 0),

AC 0) , F( 0) , G are all rectangular matrices with ,

A ! C ~\ .  .. —.
• UL ~~ JiI~~ i %~~J~~ • L L L I.

F(0)G = 0

GG = Identity matrix

We take w(~ ) as sample functions of white noise in

W = L2[(0,T); Rn
].

Now equation (~ .1) for each fixed 0 has ( see [1.0]) the unique solution.

x(0 , t )  - j  eA~~ 
(t-s) F(0) w (s) ds 0 < t < T

and

x(O ,t )

defines a H i l l . - nt ~~~~~~~~~~~~~~~~~ oj\ ’r l l  or- on ¶ V 7

3~
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W~ L
2

((0 ,T); R )

In that case

A A
S(0~t) = C(0) x (0,t)

where

A A A A
x(0 ,t)  = ACe ) x(0,t) + P(e;t) C (0) [y(t) — x(0,t)] x(0,0) 0 (4 .3a)

and PC 0 ;t) satisfies the (Riccati) equat ion:

P(0 ,t) = ACe ) P(0,t) + P(e,t) A~(O)

+ F(O) F~
’
( 0)  - P( 0 ,t) (0)~ C( 0) P (0 ,t);

P(0 ,0) = 0 (4.3b )

And finally ,  the likelihood fenctional becc es:

Exp - 1/2 {j
T 

I l ~~(o ,t ) I I 2cit - 2 f [S(0,t) y(t)]dt

+ 
~~~T 

Tr. C(0) P(0,t) C(0)’dt) (t~ . t 1) 

V

This result was apparently first obt ained by F. C. Sch~eppe [11] by

proceeding formally from the time-dH~crete case.

In cst1a~~t i J Ig  parant~ters by nvtximi sin g ( 1~~. lt )  we proceed as foh J oc :~ .

Let
T

q(o ,T) f ) ) ~~(O ,t ) ) ) 2dL - 2 

£

T 
fs(O,t) , y(t)]dt

T ...

‘11. C( 0 ) 1 (0 ,1) C ( 0 ) dt

35
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we use the iteration (madified Ne~rton-Raphson) :

0n+l = 0
fl 

— M (O~)~~ V0q(O~;T)

where M( 0 ;T) is the matrix with comtonents :

m1~
(O) = f [~~— S(8 ,t) , ~~~~~

— S(0 ,t)]dt

where { ct. } denote the ‘components ’ of 0. We assume that MCD ,T) is

positive definite on the set of admissible parameters 0.

Infi ite-Dimensionol Case V

The extension of (~~. 1) to the infinite dimensional case (corresponding

to partial differential equations ) can take many forms . One version is

treated in [10]. For each 0 , A (0) in (‘~.l) is now the infinitesin L-J

generator of a strongly continuous semigroup over a separable h u b e r t  spoee

r •q’ ~-~rri eo ‘. 4 • Ji T J!Uifl~ TflflP~ii. \ V  
~rv— ~ V~~ dF ~~~~ W J t  (1 ‘1 L)~: ci 1 1

bounded transformsti.on for each 0 , mapping II into H5, w ( )  denoting n-bite

noise in

W L2[(0,T]; H]

H being a separable Hu bert space .

Similarly C(0) is assumed to be linear hounded and C linear bounded with

F(0)G” 0; CC Identity

In that case the fin ite dViirensiVonai version (~~ . ~1) gues over without change

provided we assu~~~~~ that

T

L ( ) ) C ( 0 )  x ( O ; t ) f ) 2 )dt <~~~~
, 0

36 
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This in particular implies Vftat

C(0) P (0 ,t) C (e)~~

is trace-class a.e. and that

T

f Tr. C(0) P (O ,t)  C(Of ’dt < 
~~.0

However from tl ;e practical point of view we need to consider the ease

where C(O) is allowed to be unbounded , arid uncloseable , (eorres~x nc1i.ng

to ‘boundary ’ or ‘pointwise ’ observations in distributed parameter sys Lens) .

Here we shall consider such an extension that takes care of the

application to the case of turbulence with non-rational spectnzn (see Sec. 6) .

Actually the model we shall study represents a wide variety of situations

assuming only linearity. Thus we take:

- y (t) = S(t,0) + n1(t)  0 < t < T (~~.5)

where n1( - )  is white noise in

W0 L2((O ,T); R ~)

and S(t ,O) has the form

S(t,0) = f B (0; t - s) u(S)ds + f F ( O ; t — s)n
2
(s)do (p.6)

where n2 ( - )  is white-noise (independent of n1(~ ) )  in

= L2((0,T); Ftp
), -

u (s) is a ~~own (deterministic) function , andf 
I)u(t)H

2dt <

37
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and for each 0:

f IIB (0;a )11
2d0 + f l I FCe ;o ) l I 2da <~~~~ (4 .7)

Note that (4.1) , (4 .2) form a special case of (4.5), (4.6), (‘-~.7),

where the Leplac-e transforms of B( O ,o) and F(O,o) are constrained to be

ratio.r,al functions. To handle the generalization when one (or both) is

not n ecessarily rational , we proceed ( see [12]) as follows. We show that

we cni re~-nrite (4 .7)  in terms of a partial differential equation repres entation.

Thus let

11 = L [0 , ~~ R ]
2 p

where p is tb-c dinnnsion of tli~ observation. Let A denote the generator

of the shift—semi group over H:

V(A) = [f c II ( f ( S )  is absolutely continuous and the

deri vative f ’(~ ) c H]

and

A f = f ’

Let u(t) be an m x 1 me±tri >:funct i.on. Let B (0) denotVe a linear bou;si - -d

operator mapping Rm into H c’ie fined by:

8(0) u = g; g(t) 8(0,t)u 0 < t < ° , u c

Let

~~
(t )  :-( I\n 2

(t ) /
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so that w(•) is white noise in

L2
((0,T); R~ x R )

j~ t F ( 0)  denote the linear bounded oj ut on r~e~-~ ing R.~ x Ft~ into Ii def .i!I . . d

by

n n c R
U ( 0 )v  = g; g(t) = F(O ;t)n 2 ,  v =(

~
‘) , 1 ~

Finally let C denote the mapping of R x R into Ft defined by

w , w n , v 1 , n e R , n c R .1 n~ 1 p 2 n

Then we claim that (4 .6 )  is representable as:

~(o ,t) = A x Ct) + B(0)u (t )  + F ( O )  w(t ) ; x(0,0) = 0

(~.8)y(t) C x(0,t) + Gw(t )

V where it should he noted that

*F(0)G 0 ; GG = 1

where C is the operator defined by

Dzmairi of C = [f c El f ( . )  is continuous in 0 < t < o ]

C f= f (0 )

We assume that B(0 ,t:) , F(o,t) axe locaLly cc-n t in~ - r ~ in 0 < t < ~~. We

can readily see that x (0 ,t ) is then i i t  t h e  dens t i n  ~~~ C tH- t  ~-e~- ii t . To- t t

(4 .8)  is the S V IIW as (4 .7 )  fo] 1~~ s fi~~:;t I te 1’i p~ ;e:i l  d l l ei l

39
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x(0 ,t)=f S(t —ci) B(0)u(c)da + f S(t — o) FCO) cA (c)da

where S(t) is the sernigroup (shift ) generated by A. Even though C is not

closeable, C x( 0 ,t)  is defined and is locally continuous in 0 < t <

for each u (-~) and ~(.). We can then (see [12]) deduce the analogue of

(4.3a ) , (4.3b) as:

A A * A A
x(0,-t) = A x(0,t) + (C P(0 ,t ) )  [y(t) — C x~0,t)] x(0,0) = 0 (4 .9)

where P(0 ,t) satisfies :

U~~(0 ,t) x , y] = [P(0,t)x, Ky] + {P(0 ,t )y ,  A*x]

+ [F(0) *x , F(0)’y]

— [CP(0 ,t )x , CP (0 ,t)y]

P(e ,O) 0 , (4.10)

*
x , y c Domain of A .

In particul ar P(o,t) maps into the dc~~uin of C, and

C .P(0,t)

is linear bounde d (even though C is ~: closed; see [12]) for each t.

Moreover (cI[12]):

*
(C P(O,t)) c Tx-main of C

and

C (CP(0 ,t ) )  is buur td -d (and ciutc- ~~j t icc& 1 ly t~~s,e_c l d ; s

bcin~ f us. Ic ~ ini-; i -~:~~i

40
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The Radon-Nikodym derivative formula (4 • 4) now becczr~ s

- 1/2 f H~(e ,t ) t l 2
d-t - 2 f [S(0 ,t) , y(t )]dt

+ I Tr. C(C P(0 ,t)) dt (4.11)
JO

In this version it is important to note that the ‘steady-state’

solution of (4 .10 ) exists :

P(0 , ~~)x = limit P CO , °‘)x
ti-co

0 = [P (0 , co)X , A y ]  + [P( 0 , x)y,  A x ]

* *
+ [F(0)  x , F(0) y] — [C P (0 , o )x , C F(0 , o)y ]  (4.12)

provided

V J J  I I F ( 0 , cY+t )11 2 do dt < (4.13)

5. Application

We turn now to an application : estimation of stability and control

derivat ives from flight test data. The dynalniVc system considered arises

from the longitudinal mode pertur bat ion equations for an aircraft in

winiclgust (turbulence ) (Rediess Taylor , see [13]). We use th~. IYryd en

version of the spectrum of VLur hul er lce , which ls rat LOflal , 50 t b- it  l h~- total

system is fifliVtC dimensional. Leavin g the many essciit i-i  det a ils L- the

compr ehensive work of 111ff Ill] , the state space fonnulcit ion of th e ~~~~~~~~~~~~

is as follows : (see al so [12]) :

~(t )  A x(t )  + B u (t )  + F n2
(t )

V ( t )  = C x (t) -f I) u ( t )  -4 C

41

--- --——
~
.-
-- -.----- ---—---



~~~~~~~~~~ 
— ~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
VV ~ V

where n1(-) , and n2 
( • )  are independent whit Gaussian , and the matrices

in the equations have the form :

_
zl 0 1 -

0 0 1 0
V A =

0 M
3 

H
1

r ii V

—
u u ~ 

~ooo _

0 0

8 =  N4 0

0 1

20v

0 0 1 0

0 1 0 0
C = 10111—VZ 1 0 iON

3 
l0M1—vZ~

0 
32K1 k

1

0

0

D

g

0

g acceleration due to gravity

G diag. [.000h , .0UlI~ , .Ur , .0001]

- 

V 

42
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The lettered entries (stability and control deri v~~i—a - . ;) are ur kr~~~i ,

except for v , which is known (= 1670) . Note thet tht ~ tU1t VVil( 5C~~V ~Y~~J(~~

an unknown parameter also.

The sampling interval was 0.02 second-; whi b t - ~. s-o~~ L V S,  V V ’i:s.JI

thoiit 5h1~ Figure 1 shows the complete t t n ~ histui j  c~ t s’- oh. - -
~~~

-
~~‘ t iori

v(t )  (four components ) subdivi ded into vw 1L~~~ : r k - ~~ 
-

- - ~~
- lut~-i i -it :~~

fication , as well as the inpuL tiiac—history. ~~~~~r i ±V  0 t?1~J C\)~~~~~~~~~ t~~ V J

over the various subregions each by three ~ -t 1 d.

Method 1: Neglecting the measurement It c . i : ;e on th . - an~h c f  ~ L t a - ~J’~

n~aaz urment (v4 ) and following the co~ i~ -~~~~nJs ~

likelihood technique developed in [13]. iL is i - Ic’

for this particular example at high ten Vh Voic: ;~~ , lo x-is;.

Method II: This is the method developed herein .

Method III : This was a “check” method , in which the turh u]cn~-

was ignored completely in the model .

The results are suuniarized in Figure 2. Sample means and v-u- - u ices -

of the estimates obtained over the different data-iegions arc shown , along

with the wind-tunnel values as well estimates obtained on other turbulence-

free ( smooth air) flights. It can be seen that Method II yields t h e  most

consistent estimates . It alSO turns out that Method II is the 1etst  in

conip~.rtational tine —- the estimates converging in fewer iteratioiis . It

can also be seen that i~~oring the turbulence leads to the worst oxult s .

For more discussion see [11]. The remaining f igure.s indicate the ri cituro

of the “f i t ” obtained using the estimated coefficients to the observed

data. Figure 3 shows the close agreement provided by ti~-thod 11. J i g u t ~ -s 4

‘18 
-

I.



- — ~ - —~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VVr ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~ V

and 5 indicate how much worse the agreenent is on the same stretch of

data if the turbulence is not accounted for .

If we use the non-rntional (KolmDgorov) version of the spectrum of

turbulence , we have to use [4 . U]. In pa: ticular in this case ,

F(0,t) has the form

5/6 —1/6
- F(O ,t) = (a(O) t + b (0)t  ) ~~~

corresponding to the spectral density of the form (cf[15]):

1 + c f 2

~~~~7~2~~116

The possibility of using flight-test data to distinguish betceen the

two models of the spectral density is an intriguing one at the present

tine.

I
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